
Page 1 of 2

.NET Generics

Introduction

C# generics were modeled after templates in C++1.

Although Bjarne Stroustrup (the inventor of C++) dislikes referring to C++ templates as macros, it’s close

enough so I’m going to describe them as a type of macro.

But note that templates are much more powerful than generics, although the advanced features of

templates often requires an expert to create and maybe even use them. However the designers of C#

wanted a language that didn’t require rocket scientists to code in, so they opted to support just the

major benefits of templates.

The First Benefit of Generics

One goal is to reduce the amount of code written by the programmer. Consider a min function that

takes two int’s and returns the smaller of the two.

 int min(int x, int y) {

 if (x < y) {

 return x;

 } else {

 return y;

 }

 }

Now consider a min function that takes two single precision (float) arguments

 float min(float x, float y) {

 if (x < y) {

 return x;

 } else {

 return y;

 }

 }

Note that, except for the data types, the source code is identical2. And the same comment holds true for

other data types, such as double, long, short, etc. And since the “<” operator is defined on, say, strings3,

again, the same code would work on strings.

So we could write…

 T min<T>(T x, T y) {

 if (x < y) {

 return x;

1 I don’t know where C++ got the idea from.
2 The object code would be different, but that’s the compiler’s problem, not the programmer’s.
3 Or, if your user-defined class defines operator <, it could even work in that case.

Page 2 of 2

 } else {

 return y;

 }

 }

The min<T> syntax tells the compiler that this is (sort of) a macro with a parameter T4, and we would

invoke it as

 int int_mini = min<int>(3, 6);

 var float_mini = min<float>(1.2f, -4.75f);// “f” suffix means single precision

 double dbl_mini = min<double>(1.2, Math.PI);

params

Nothing to do with generics (although it can be used with them), but this is a reasonable place to

introduce the params keyword.

Suppose you want the minimum of, not 2 values, but 3. Sure, we can write a method with parameters x,

y, and z. And, if necessary, write yet another method that finds the minimum of 4 values. And so on. But

where do you stop? 10 parameters? 20? Where?

Well, one approach would be to define a method with a different parameter signature, taking an array

of values. For example,

 int[] nums = new int[] {3, 6, 27};

 int int_mini = min<int>(nums);

 T min<T>(T[] vals) {

 if (vals.Length = 0) {

 return int.MinValue;

 }

 int min = vals[0];

 for (int i = 1; i < vals.Length; ++i) {

 if (vals[i] < min) {

 min = vals[i];

 }

 }

 }

4 T being, by convention, short for Type. However, longer names are allowable and even encouraged. For example,
a hash table (which .NET calls a Dictionary) that takes a string and returns an object might be declared as
Dictionary<TKey, TValue>.

