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Please don’t panic 

A GENTLE INTRODUCTION TO CALCULUS 
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I’m quite open to questions during the presentation. But… 

• We’ve got a lot to get through, and a limited time to do so in, so if things even start to get 

out of hand, I may have to be firm and cut off the discussion. 

• There are over 50 slides, which allows me at most 1-2 minutes per slide, even without 

questions. Time will be tight. 

• Again, for time constraint reasons, I’ll accept only questions that boil down to “I don’t 

understand”, “could you go over that again” and so on. If any other types of questions are 

asked, I’ll have to be curt and say that we have to defer the question.  

• When the presentation is over, if we have any time left, then the field will be open to any 

questions. 
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The term Calculus comes from the Latin for “pebble” and is, of course, related to the word 

“calculate”. 

There are several main types of calculus, each with sub-genres. For this introductory 

presentation, we’ll talk exclusively about Differential Calculus, which finds the slope (*) of a 

curve. 

Note: I won’t emphasize the following, but you might notice from the graphs that follow that 

the slope also indicates the rate of change of a function(*) at a given point. The larger the 

slope, the faster the function value will be changing at that point.  

(*) We’ll define the terms slope and function shortly. 
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Nature seems to have the property that it tries to either 

maximize or minimize some property. 

For example, Fermat’s Principle states that the path taken 

between two points by a ray of light is the path that takes 

the least time. 

If we graph an equation for a physical process, we’ll often 

see that it climbs to its maximum value, then decreases. 

Or descends to its minimum value then increases. 

Our goal with calculus is to find the value that maximizes 

(or minimizes) its value. 
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We have limited time for this lecture, so we’re going to solve only two problems.  

The first is a simple problem. You have a certain amount of fencing and you want to build a 

rectangular pen of maximum area against the side of a river. That fourth side doesn’t need 

fencing. What should the dimensions of the pen be? 

The second is much more interesting.  

Imagine you’re a lifeguard on a beach and you hear a cry for help from someone in the water. 

You can run faster on land than you can swim in water. What can you tell me about the path 

you should take to get to the distressed swimmer as quickly as possible? 

 

But I should warn you. I’ve also strewn a few homework 

problems throughout the text! 
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Simple high-school algebra 

Simple graphing 

How to calculate the slope of a line 

 

And that’s all! 
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• We’ll take a simple curve (a parabola) and try to find the slope of the curve at a particular  

point.  

• We’ll get closer and closer to our result by a series of closer and closer approximations.  

• Intuitively this will give us our answer. 

• But then we’ll generalize. Instead of finding the slope of a parabola at a specific point, 

we’ll develop a formula that will let us find the slope of any curve at any point. 

• Once we have that, we’ll apply our formula to a simple example. 

• Then we’ll tackle a bigger problem, which will lead to a surprising result!  

 

• But first we’ll take a refresher course in some of the simple math we’ll need along the way.  
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Later on we’ll want to multiply the expression (x + h) by itself. 

(x + h) * (x + h) 

Note: To avoid confusion with a variable name of “x”, and the multiplication symbol (also “x”), I’ve 
used “*” to indicate multiplication. 

In high school you may have been taught the FOIL (First, Outside, Inside, Last) rule.  

First: x * x  (x + h) * (x + h) 

Outside: x * h  (x + h) * (x + h) 

Inside: h * x  (x + h) * (x + h) 

Last: h * h  (x + h) * (x + h) 

Add them together and you get 

 x*x + x*h + h*x + h*h 

 = x2 + 2xh + h2 
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We claim that (x + h) * (x + h) = x2 + 2xh + h2 

Well, consider 7 * 7 = 49. 

But we can also write this as (3 + 4) * (3 + 4), where x = 3 and h = 4.  

So x2 = 3 * 3   =  9 

 2xh = 2 * 3 * 4 =  24 

 h2 = 4 * 4  =  16 

 ---- 

 49 

Amazing. It actually works! 
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Imagine two points on a line, say (3, 5) and (10, 26). 

How fast is that line increasing? 

The rise: difference in the y-coordinates (26 – 5) = 21. 

The run:  difference in the x-coordinates (10 – 3) = 7. 

The slope is defined as “the rise over the run”. 

Thus the slope is 21 / 7 = 3. 

In general, if the points are (x1, y1) and (x2, y2)… 

 rise = y2 – y1 

 run = x2 – x1 

 slope = (y2 – y1) / (x2 – x1) 
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A function is a rule about how to calculate something. 

It has a name (e.g. “f”, but could be, say, “sin” for the trig function sine).  

Sometimes we use a symbol for it (e.g. √ ), but here we’ll always use names. 

It has one or more parameters (values). 

We write it as, say, “f(x)” (“eff-of-ecks”) or “g(x, y)” (“gee-of-ecks-comma-wye”) 

We must define the rule. For example, a function named “f” that takes a single parameter and 
calculates its square would be “f(x) = x * x”. 

Examples for f(x) = x * x: 

 f(3) = 9 

 f(4) = 16 

 f(1.5) = 2.25 

 f(x + h) = x2 + 2xh + h2 



A tangent is a straight line that just “kisses” the graph of a function at a point.  

For example, here’s a tangent to the parabola y = x2 at the point (2, 4). 

 

 

 

 

 

 

By definition, the slope of a curve at a point is 

the slope of the tangent at that point. 

 

Note: the scale on the two axes is different. 

We’ll do this in most of our diagrams to help 

focus on some aspects of the graph, at the 

admitted cost of some distortion. So while 

the tangent above looks like it has a slope of 

about 1, it actually has a slope of 4. 
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Functions normally have one or more extreme points, 

either maximums or minimums. 

Nature seems to favor either maximizing or 

minimizing various quantities (e.g. energy, time, etc). 

At an extremum, the slope of the tangent is zero! 

So if we can find where on the graph the slope of the 

tangent is zero, we can probably find some 

interesting physics. 
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The main job of differential calculus is, given a function, 

find the slope of the tangent at a general point on the 

curve. 

For our parabola example, the slope of the tangent at the 

point (2, 4) is 4. 

As we’ll see, the slope at (3, 9) is 6. 

And as we can see intuitively, the slope is zero at (0, 0). 

But can we prove this? 
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Before we go any further, let’s be clear about something. 

Sometimes I’ll write a point as (x, y). 

Other times I’ll write (x, f(x)). 

Which is correct? And the answer is that they’re the same. 

When we graph something, we normally pick an x value, then calculate the 

corresponding y value. 

But how do we do that? Answer: We’re drawing the graph of some 

particular function that for each value of x there’s a corresponding y value 

calculated as y = f(x). 

So in general, we can (and will) use y and f(x) interchangeably. 
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A tangent intersects a graph at a single point 
(and maybe others). 

 

 

 

 

 

 

 

Note that this is the graph of y = x3 and the 
scale is very much distorted. Otherwise we 
wouldn’t be able to see where the tangent 
intersected the curve to the left. 

Whereas a secant intersects a graph in two 

places (and maybe more). 
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In what follows, we’ll develop a way to find the slope of the tangent (the derivative) to the 

function f(x) = x * x at the point (2, 4). 

That will be our pivot point. We’ll see exactly what this means in the next slide.  
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Suppose we want to calculate the slope of the tangent 
to function f(x) at a given point. This will be our pivot 
point. 

Draw a secant through the pivot point to a nearby 
secondary point on the graph. Calculate its slope. This 
will be a first approximation to the slope of the tangent. 

Keeping the same pivot point, move the secondary 
point nearer to the pivot point to create a new secant. 
Calculate its slope. This will be a better approximation. 

As you get closer and closer to the pivot point, the 
slope of the secant is a better and better approximation 
to the slope of the tangent. 

By the time you reach the pivot point, the secant will 
have become the tangent and you’ve got your answer. 
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Secant to (2+3, 25) 

Slope = (25 – 4) / (5 – 2) = 7 

Secant to (2+2, 16) 

Slope = (16 – 4) / (4 – 2) = 6 

Secant to (2+1, 9) 

Slope = (9 – 4) / (3 – 2) = 5 
Tangent! Slope = 4 (intuitively) 
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From the previous slide, let’s look at the slope of the secant based upon our offset.  

 

 

 

 

 

 

I see a pattern there. The slope of the secant is 2x1 + h. 

Can we prove this? 

And as h becomes smaller and smaller, the slope of our tangent gets closer to 2x1 (which in this 
case gives 4). 

And maybe the slope of the tangent at any point x on a parabola becomes closer and closer to 2x. 

But can we prove this??? 

 

x1 2x1 h 2x1 + h Slope 

2 4 3 7 7 

2 4 2 6 6 

2 4 1 5 5 
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The next couple of slides is where we actually do a bit of 

elementary algebra. 

 

And again, please don’t panic! 
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We want to calculate the slope of the secant from the point (x, 

f(x)) to a nearby point for the function f(x) = x * x. 

In our previous example, this was at the point (2, f(2)) = (2, 4).  

So the starting (pivot) point for our secant will, in general, be  

 (x, f(x)) 

Now move to a new x coordinate at some distance to the right 

(or left). We’ll call this distance h. So our second point will be  

 (x + h, f(x + h)). 

So with x = 2 and (say) h = 3, our second point will be at 

 (2 + 3, f(2 + 3)) = (5, f(5)) = (5, 25) 

If we started at the point (10, 100), our second point would be 

(10 + h, f(10 + h)). 
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So we’ve got two points and they define a straight line. What’s its slope? 

From the previous slide, two points on a secant are 

 (x, f(x)) and     (x + h, f(x + h)) 

So the rise is y2 – y1                  = f(x + h) – f(x) 

The     run  is x2 – x1 = x + h – x = h 

So the slope of the secant is the rise over the run 

  
𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
 

And that’s the general formula for the slope of a secant for any curve f(x).  
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Let’s plug some details into 
𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
 for 𝑓 𝑥 =  𝑥2 

𝑓 𝑥 + ℎ = 𝑥 + ℎ ∗ 𝑥 + ℎ = 𝑥2 + 2𝑥ℎ + ℎ2 
 

𝑓 𝑥 + ℎ − 𝑓 𝑥 = 2𝑥ℎ +  ℎ2   The rise 

h     The run 
 

Thus  
𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
 = 

2𝑥ℎ+ℎ2

ℎ
 =  2𝑥 +  ℎ  

Important note! We’ve just divided by h. Hold that thought. We’ll need it shortly. 

So the slope of the secant on our parabola from the point (x, f(x)) to the point h units 
over is 

2𝑥 +  ℎ 
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So we see that our formula 

Slope of secant = 2x + h 

works! 

For example, if h = 3, the slope = 2 * 2 + 3 = 7 

Secant to (2+3, 25) 

Slope = (25 – 4) / (5 – 2) = 7 

Secant to (2+2, 16) 

Slope = (26 – 4) / (4 – 2) = 6 

Secant to (2+1, 9) 

Slope = (9 – 4) / (2 – 1) = 5 
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The slope of the secant for f(x) = x2 between the points (x, f(x)) and (x + h, f(x + h)) is 2x + h. 

As we get closer to our original coordinate x, h becomes smaller and smaller.  

In the limit, h approaches 0 and we’re left with just 2x. 

For the function f(x) = x2, the slope of the tangent at any point x is simply 2 * x 

 

We say “The derivative of x2 is 2x” 

 

And the process of finding a derivative is called differentiation 
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We had the formula for the slope of the secant as 2x + h. 

Why didn’t we just set h = 0 and get 2x? 

Because when we derived the formula, at one step we divided by h. And if we decide later that 

h was equal to zero, then that invalidates our whole argument. 

You can’t divide by zero! 

To get around this problem, mathematicians developed the concept of a limit. 

We don’t have time to go into the slightly subtle details of exactly what this is. Those 

interested can find various articles on the web. See the References section at the end of this 

presentation for places to start. But intuitively, it means that as h gets closer and closer to 

zero, our calculation (2x + h) gets arbitrarily close to 2x, and that’s going to be our answer.  

So in the rest of this presentation, I’m just going to pretend that h is zero. You and I both know 

that this is wrong, but it’s close enough for now. 
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We often write 𝑓′(𝑥) (“eff prime of ecks”) for the derivative. This is the notation used by Sir 

Isaac Newton. 

So 𝑓 ′ 𝑥2 = 2x. 

Gottfried Leibniz (who independently invented calculus) came up with the (slightly strange) 

notation  

If y = f(x), then he wrote 
𝑑𝑦

𝑑𝑥
 for the derivative. 

 But beware. Although this looks like a fraction, it isn’t.  

 To avoid confusion, we’ll use the 𝑓′(𝑥) notation. 
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We won’t prove these, but mathematicians have 
developed the formulas for the derivatives of many 
common (and many uncommon) functions. 

Make note of the formulas for the derivatives of 

 c * f(x) (where c is a constant) 

 f(x) ± g(x) 

 𝑥2 +  𝑎2  (a constant) 

  𝑎2 + 𝑞 − 𝑥 2 
 (a, q constant) 

We’ll use these later. 

Note: Rules 1-5 are all special cases of Rule 6. And 
rule 6 is a special case of rule 12. 

Homework – Derive the formula for the derivative of 
f(x) = x3 

Rule # Function 

Rule (y = …) 

Derivative 

1 c (any constant e.g. 

6.8) 

0 

2 x 1 

3 x2 2 x 

4 x3 3 x2 

5 xn n xn-1 

6 cxn c * n xn-1 (e.g. 7.3 * n xn-1) 

7 sin(x) cos(x) 

8 cos(x) -sin(x) 

9 f(x) ± g(x) f’(x) ± g’(x) 

10 f(x) * g(x) f'(x)g(x) + f(x)g'(x) 

11 f(x)/g(x) (f '(x)g(x) - f(x)g'(x)) / g2(x) 

12 𝑐 ∗ 𝑓(𝑥) 𝑐 ∗ 𝑓′(𝑥) 

13 𝑥2 + 𝑐2 
𝑥

𝑥2 +  𝑐2
 

14 𝑐2 + (𝑞 − 𝑥)2 −(𝑞 − 𝑥)

𝑐2 + (𝑞 −  𝑥)2
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Suppose we have a function whose formula is 

  1000 * x – 2 * x2 

This is of the form f(x) – g(x), where 

 f(x) = 1000 * x 

 g(x) = 2 * x2 

So the derivative of this is 

 f’(x) – g’(x) (rule 9) 

f’(x) = 1000   (rule 6 / 12) 

g’(x) = 2 * 2x = 4x  (rule 6 / 12) 

So the derivative of our full expression is 

 1000 - 4x 

The slope of the tangent to the curve  

 f(x) = 1000 * x – 2 * x2 

at point x is  1000 – 4x 

 

Rule # Function 

Rule (y = …) 

Derivative 

1 c (any constant e.g. 

6.8) 

0 

2 x 1 

3 x2 2 x 

4 x3 3 x2 

5 xn n xn-1 

6 cxn c * n xn-1 (e.g. 7.3 * n xn-1) 

7 sin(x) cos(x) 

8 cos(x) -sin(x) 

9 f(x) ± g(x) f’(x) ± g’(x) 

10 f(x) * g(x) f'(x)g(x) + f(x)g'(x) 

11 f(x)/g(x) (f '(x)g(x) - f(x)g'(x)) / g2(x) 

12 𝑐 ∗ 𝑓(𝑥) 𝑐 ∗ 𝑓′(𝑥) 

13 𝑥2 + 𝑐2 
𝑥

𝑥2 +  𝑐2
 

14 𝑐2 + (𝑞 − 𝑥)2 −(𝑞 − 𝑥)

𝑐2 + (𝑞 −  𝑥)2
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Imagine you own a plot of land next to a river. You have 1000 meters of fencing and you want 

to create a rectangular 3-sided pen to keep out animals. The river will be the 4 th side of the 

pen and does not need fencing. 

What (rectangular) dimensions should the pen be to maximize its area? 

 

 

 

 

 

 

Let’s have some guesses here before going on to the next slide… 
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Since the pen is rectangular, let the two sides 

perpendicular to the river be x. This will be the height 

of our rectangular pen. 

So the third side will have length 1000 – 2 * x. 

Thus the area will be  

 f(x) = x * (1000 – 2 * x) 

 f(x) = 1000 * x – 2 * x2 

This is a parabola. 

When we plot this, we can see intuitively that the 

maximum area is somewhat more than 100,000 

square meters, for an x value of around 250 meters. 

But note that at the apex, the slope of the tangent is 

zero. Aha! 
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So if  

 f(x) = 1000 * x – 2 * x2  (The area of our pen) 

Then the derivative (slope of the curve at point x) is 

 f’(x) = 1000 – 2 * 2 x = 1000 – 4x 

To find the maximum, see where the derivative (the slope of the tangent) becomes 0. 

 If 1000 – 4x = 0, then 

 1000 = 4x 

 250 = x (the perpendicular length) 

And the third side would be 1000 – 250 * 2 = 500 meters. 

Thus we should make a pen of dimensions 250 * 500 for a maximum area of 125,000 square 
meters. 

Un morceau de gateau! 
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So we know that the slope (derivative) is 1000 – 
4x. So let’s take a look at some values for our 
original function, 1000x – 2x2 

In the table to the lower right, we see that going 
from 0 towards 250, the slope is positive, meaning 
the original function is increasing over that range, 
but slowing down. (As we mentioned early on, the 
slope shows the rate of change of the function.) 

But past x = 250, the slope is negative, showing 
that the function (the area) is declining. And ever 
faster. 

Which perfectly matches our visual concept of the 
graph. 

Phew! It works! :) 

 

x (height) Slope Area 

0 1000 0 

150 400 105,000 

200 200 120,000 

250 0 125,000 

350 -400 105,000 

400 -600 8,000 

500 -1000 0 
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Let’s step back and look at what we’ve done. 

• We’ve approximated a tangent by a secant. 

• We’ve developed a surprisingly simple formula for the slope any secant. 

• We’ve tweaked the secant (by lowering ‘h’) to give better and better estimates to the 

tangent. 

• In the limit (h → 0) this gives us the slope of the curve at any point. 

• Interesting physics (a maximum or minimum) can often be found when the slope is 0.  

• So we take our formula for the slope (the derivative of our given function), set it equal to 

0, and solve for x. 

• And that’s our maximum (or minimum)! 
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To give you exercise in setting up and solving these problems, consider the following… 

 

Our approach to the pen was to assume the height of the rectangle was x, which led to a 

width of 1000 – 2x. 

Redo this analysis assuming the top of the rectangle is of width x. What are the lengths of the 

other sides, what’s the new formula for the area, and do we come to the same conclusion? 

(We’d better!) 
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Assume we must create a rectangular fenced-in area with L units of fencing, and have it 

enclose as large an area as possible. 

What must its dimensions be? 

Thus what is the maximum rectangular area you can enclose with L units of fencing? 

 

 

Just to be perfectly clear, non-rectangular shapes such as circles aren’t admissible shapes for 

this problem. Also, the fencing must cover all 4 sides (no river in this case).  
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See you back here in 5 minutes. OK? 
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We all know this one, right? 

In a right-angled triangle, the square on the hypotenuse is 

equal to the sum of the squares on the other two sides. 

  h2 = a2 + b2 

  or h = a2 + b2  

 

Please note: This h has nothing to do with the h we’ve been 

using up to this point. Even with Greek and other alphabets, 

they have so many concepts that at times they’ve used the 

same letter for totally different ideas. So please don’t be 

confused. 
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By definition, in a right-angled triangle, the sine of angle A is 

defined as the ratio of the length of the side opposite the angle 

divided by the length of the hypotenuse. 

  sin A = a / h 

Similarly,   sin B = b / h. 

Every angle has a corresponding numeric value called the 

sine. Consult a scientific calculator app on your phone. 

Note: It doesn’t matter what size the right triangle is. For a 

given angle, the ratio of the two sides is always the same. 

There are names for the other ratios (e.g. b / a, etc), but we 

won’t need these. 

 

Angle (θ) sin θ 

0º 0 

30º 0.5 

45º 1

2
 = 0.707… 

60º 3

2
 = 0.866… 

90º 1 
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Suppose you’re a lifeguard on a beach, sitting in your high 
chair 50 meters from the water (We’ll call this point A). 
Suddenly you hear someone in the water calling for help. 
They’re (say) 300 meters to the east (distance ‘q’) and 30 
meters from shore. This is point B. You need to get to the 
person as quickly as possible.  

Suppose you can run 5 meters/second on land and swim 1 
meter/sec. What can you tell about the path the lifeguard must 
travel? 

We’ll need the following later: he’s going to leave his station at 
some angle. We’ll call this θ1. (The Greek letter theta, and 
pronounced as either “thay-ta-sub-one”, or perhaps just “thay-
ta-one”.) 

In general he may change direction when in the water. We’ll call 
that angle θ2.  

Note: There are two θ1’s in the diagram. By elementary 
geometry, they’re equal. So are the two θ2’s. 
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Does he 

a) Run the 50 meters directly to the water, then start swimming? 

b) Run diagonally to the shore directly in front of the swimmer and start swimming? 

c) Run diagonally straight for the swimmer and enter the water? 

d) Something else? 
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How are we going to approach solving this? Actually it’s 

pretty straightforward. 

• The total distance taken will be from A to D, then from D 

to B. We’ll use the Pythagorean Theorem to get the 

length of each of the two segments. 

• The time taken will be AD divided by his running speed 

on land, added to DB divided by his swimming speed. 

• We’ll differentiate that, set it to zero, then solve. 

• Easy peasy!  
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• The lifeguard’s path will be from A to D (on land), then from D to B 
(in the water). 

• We’ll call his speed on land Sland, and in the water, Swater. Note that 
both these (for this problem) are constants. We’ll need to remember 
this when we differentiate. 

• He’ll enter the water at point D, some distance x east of him. We 
know the total horizontal distance to B (in our example, 300 meters) 
that we’ll call q, so the distance from D to E is q – x. 

• AD is the hypotenuse of right triangle ACD, so its length is d1 = 
𝐶𝐷2 + 𝐴𝐶2 = 𝑥2 +  𝐴𝐶2 . Again, for this problem, AC (and thus 

AC2) is a constant. 

• And thus the time he takes to go from A to D is  

  t1 = 
𝑥2+ 𝐴𝐶2

Sland

 

• Similarly, the time he spends in the water is 

  t2 = 
𝐸𝐵2+ 𝑞 −𝑥 2

  

Swater
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• So the total time it takes to get to the distressed swimmer is 

   
𝑥2+ 𝐴𝐶2

Sland
 + 

𝐸𝐵2+ 𝑞 −𝑥 2
  

Swater
 

• Looks imposing, doesn’t it? But it’s really not that bad. It’s 

just two distances, divided by their respective speeds, 

added together. 

• So if we want the time to be a minimum, all we have to do 

(he says blithely!) is to differentiate it, set that to zero, and 

see what we come up with. 

• Let’s pause for, say, 30 seconds, while you think about this. 

Convince yourself that, yeah, that those are the correct 

formulas for distance and time. 
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The total time it takes to get to the distressed swimmer is 

  
𝑥2+ 𝐴𝐶2

Sland
 + 

𝐸𝐵2+ 𝑞 −𝑥 2
  

Swater
 

So that you shouldn’t be too overwhelmed by all those 

symbols, let’s plug in a few values. AC = 50; q = 300; EB = 

30; Sland = 5; Swater = 1 

  
𝑥2

 
+ 2500

5
 + 

900+ 300 − 𝑥 2
 

1
 

 

 



We want to plot 
𝑥2+ 2500

5
 + 

900+ 300 − 𝑥 2
 

1
 

That’s easy. Go to www.WolframAlpha.com and type in 

 plot (sqrt(x^2 + 2500) / 5) + sqrt(900 + (300 - x)^2) 

And we get the minimum 

time just short of 300, as 

we’ve just calculated. 

 

And notice that the point of 

least time, the slope of the 

curve is zero! 
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http://www.wolframalpha.com/
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Remember that cheat sheet of derivatives from several slides 

back? 

Differentiating  
𝑥2+ 2500

5
 + 

900+ 300 − 𝑥 2
 

1
 gives us… 

 
𝑥

5 ∗ 𝑥2+ 2500
 + 

−(300 − 𝑥)

900+ 300 − 𝑥 2
 

Setting this to zero gives us  

 
𝑥

5 ∗ 𝑥2
 
+ 2500

 + 
−(300 − 𝑥)

900+ 300 − 𝑥 2
 = 0 

Solving this for x is a straightforward but messy bit of algebra. 

Fortunately there’s an easy way to solve it. 

 

Function Derivative 

f(x) ± g(x) f’(x) ± g’(x) 

c * f(x) c * f’(x) 

𝑥2 +  𝑎2 
𝑥

𝑥2 +  𝑎2
 

𝑎2 + (𝑞 − 𝑥)2 −(𝑞 − 𝑥)

𝑎2 + (𝑞 −  𝑥)2
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We want to solve 
𝑥

5 ∗ 𝑥2
 
+ 2500

 + 
−(300 − 𝑥)

900+ 300 − 𝑥 2
 = 0 

Go to www.wolframalpha.com and type in 

solve (x / (5 * sqrt(x^2 + 2500))) - ((300 - x) / sqrt(900 + (300 - x)^2)) = 0 

We get 

 

 

 

 

Well, that was easy! 

 

http://www.wolframalpha.com/


50 

Or rather a set of them. 

Play around with the constants in the scenario and use WolframAlpha to work out the 

numerical results. For example… 

• What if the lifeguard’s running speed were 3 m/sec? 2 m/sec? 1 m/sec? (think about this 

last one) 

• What if the lifeguard’s swimming speed were 2 m/sec? 5 m/sec? (think about this last 

one) 

• Move the initial positions of the lifeguard and swimmer closer or farther from the shore. Or 

farther/closer in an east/west direction. 

And can you figure out the angles (θ1 and θ2) for the original example, plus all the changes 

above? 
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So the bottom line is that the lifeguard should run diagonally to the water line, 
293.967 meters east of his original position. He should then swim directly to 
the ailing swimmer. That will get him there the quickest.  

So I know what you’re thinking. That was a lot of work, involving very (very!) 
messy expressions, with symbolic distances and time, involving squares, 
square roots, sub-expressions, addition, division, differentiating, setting 
things to zero, and solving equations.  

But look on the bright side. At least we didn’t also have to sacrifice a goat at 
dawn to get this to work! (I hate getting up early, don’t you?) 

Anyway, I’ve tried to show how you can take this semi-complex problem and 
break it into (hopefully comprehensible) pieces.  

The differentiation process was perhaps the most straightforward of all, just 
looking up functions (e.g. 𝑎2 + 𝑥2) and replacing them with their 
derivatives. 

But we did manage to get a mathematically proven answer, so maybe it was 
worth the work. 
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But I’d be leaving out the most important part! 
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OK, so we figured out where to enter the water. But there’s a 

major extra piece of physics we can extract from all our setup 

work. 

Let’s go back to our original expression for the time it took to 

reach the swimmer: 

 
𝑥2

 
+ 𝐴𝐶2

Sland
 + 

𝐸𝐵2+ 𝑞 −𝑥 2
 

Swater
 

Differentiate this  and equate it to zero to get: 

 
𝑥

𝑆𝑙𝑎𝑛𝑑 ∗ 𝑥2+ 𝐴𝐶2 + 
−(𝑞 −𝑥)

𝑆𝑤𝑎𝑡𝑒𝑟 ∗ 𝐸𝐵2+ 𝑞 −𝑥 2
 = 0 

But 
𝑥

𝑥2+ 𝐴𝐶2 is just sin θ1 and 
(𝑞 −𝑥)

𝐸𝐵2+ 𝑞 −𝑥 2 is just sin θ2 
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So  
𝑥

𝑆𝑙𝑎𝑛𝑑 ∗ 𝑥2+ 𝐴𝐶2 + 
−(𝑞 −𝑥)

𝑆𝑤𝑎𝑡𝑒𝑟 ∗ 𝐸𝐵2+ 𝑞 −𝑥 2
 = 0 

 becomes  
sin θ1

𝑆𝑙𝑎𝑛𝑑

 + 
−sin θ2

𝑆𝑤𝑎𝑡𝑒𝑟

 = 0 

or   
sin θ1

𝑆𝑙𝑎𝑛𝑑

 = 
sin θ2

𝑆𝑤𝑎𝑡𝑒𝑟

 

Alternatively we can write  
sin θ1

sin θ2 

 = 
𝑆𝑙𝑎𝑛𝑑

𝑆𝑤𝑎𝑡𝑒𝑟

 

In words, if the transit time is minimized when travelling through two media (e.g. the passage of 

light), the angle of refraction is determined by the propagation speeds involved, according to 

this formula. 

This result is called Snell’s Law. 
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Why primitive spear 

fishermen had to aim 

where the fish wasn’t! 

How your eyeglasses 

work. 

Put the swimmer back on 

land, so that the speed in 

the “two” media are the 

same, and we get Angle 

of Incidence = Angle of 

Reflection 
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We’ve only scratched the surface. And that’s just the surface of one branch of 

calculus. 

But we’ve accomplished a lot in the last hour or two. 

Hopefully you now understand a bit of what Differential Calculus is and how it 

can be used. 
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• http://en.wikipedia.org/wiki/Limit_(mathematics) 

• http://en.wikipedia.org/wiki/Epsilon,_delta 

• http://en.wikipedia.org/wiki/Snell%27s_law 

• http://en.wikipedia.org/wiki/Fermat%27s_principle 

• http://www.khanacademy.org 

 


