An Integrated View of Chemistry and Physics

The structure of Chemistry

From electrons around a nucleus to the wonders of technology and life itself

Outline of this talk

- 1 The periodic table
- 2 The electrons around a nucleus shape what atoms can do
 - The outermost shell structure of the electrons in orbitals around a nucleus
- 3 Some selected elements
- 4 Molecules
 - Geology, inorganic chemistry
 - Technology. The metals, radioactivity
 - Life, organic chemistry including, as a finale, DNA and proteins

1 The periodic table

Dmitri Mendeleev (1834-1907)

- The table is in numerical order based on the atomic number
- The elements are arranged in groups according to their properties

2 The electrons around a nucleus shape what atoms can do.

- The electrons are distributed around the nucleus in quantum shells
- Valence electrons:- Valence electrons are the electrons of an atom situated in an outermost shell surrounding an atomic nucleus.
- They can participate in the formation of chemical bonds.

There are several shapes of orbitals around the nucleus

3.The chemistry of some significant elements (demonstrating the rationale of the structure of the periodic table)

a Hydrogen

- b Helium and the noble gases
- **c** Carbon and its relative, silicon
- d Oxygen
- e Sodium
- f Chlorine
- f Phosphorus
- g Iron and the multivalent metal elements
- h Uranium and its unstable cohort (radioactivity)

The Noble Gases – The stability of full shells

Floment	Electron
ciement	Configuration
He	1s ²
Ne	[He] 2s ² 2p ⁶
Ar	[Ne] 3s ² 3p ⁶
Kr	[Ar] 4s ² 4p ⁶
Xe	[Kr] 5s ² 5p ⁶

- All the noble gases have full valence shells
- Thus they are very stable
- Reactions between elements usually creates a shared stability

Carbon

11

Carbon is a chemical element with symbol C and atomic number 6. Classified as a nonmetal, carbon is a solid at room temperature.

This illustration depicts eight of the allotropes (different molecular configurations) that pure carbon can take:

- a) Diamond
- b) Graphite
- c) Lonsdaleite
- d) C60 (Buckminsterfullerene)
- ► e) C540
- f) C70
- g) Amorphous carbon
- h) single-walled carbon nanotube

Graphene Superconductors May Be Less Exotic Than Physicists Hoped

ABC trilayer graphene, with layers that are shifted rather than twisted, showed flickers of superconductivity when cooled to near absolute zero.

4. Molecules

14

Geology, inorganic chemistry Technology. The metals, Radioactivity Life, organic chemistry including, as a finale, DNA and proteins

Geology, inorganic chemistry

Crustal abundances of elements of atomic numbers 1 to 93.

Orbital diagram of the Sodium (Na) atom

Ionic Bonding giving stability to each ion

Ignic reactions; Dissolving salt in water

Covalent Bonds

- A covalent bond is one in which one or more pairs of electrons are shared by two atoms.
- two atoms of oxygen that are covalently bonded by the sharing of two pairs of electrons as illustrated in the shaded area.

Oxygen gas (O₂)

O=0

A double covalent bond (sharing 2 pairs of electrons)

Phosphorus

- Phosphorus has 5 valence shell electrons available for bonding.
- Its valence shell configuration is 3s²3p³.
- Phosphorus forms mostly covalent bonds.

Many industrial uses as well as being <u>very important in</u> physiology

A salt, prepared by the action of phosphoric acid on phosphate rock, is calcium dihydrogen phosphate, or superphosphate, $Ca(H_2PO_4)_2$, the most widely used phosphate fertilizer.

ATP, Adenosine tri phosphate

Structure of ATP Molecule

In quartz SiO₄ tetrahedra are arranged in virtual threefold helices

Amethyst (purple quartz) 27 Smoky quartz

- Quartz has a formula unit composition of SiO₂ and is classified as a Tectosilicate..
- All four oxygens in quartz are polymerized to additional silica groups; all silica tetrahedra are polymerized to four other tetrahedra.
- In its characteristic crystal form, quartz has a hexagonal structure.

The atomic arrangements in quartz and sodalite

Technology. The metals, Radioactivity

Iron and metallic bonding

- Metallic bonding accounts for many physical properties of metals,
- strength,
- ductility,
- thermal and electrical resistivity and conductivity,
- opacity and luster.

Uranium and its radioactive decay chain

Atoms are not indivisible!!

Many of the very large elements such as Uranium are unstable and radioactive.

- They undergo nuclear reactions releasing at various stages, an alpha particle, which is a helium nucleus or a beta particle (an electron or a positron) and a neutrino and gamma radiation
- Ultimatly the stable element is lead

Life, organic chemistry including, as a finale, DNA and proteins

Amino Acids

glycine

Bacteriorhodopsin

The structure of the protein bacteriorhodopsin

- Bacteriorhodopsin is a membrane protein in bacteria that acts as a proton pump.
- Its conformation is essential to its function.
- The overall structure of the protein includes both alpha helices (green) and beta sheets (red).

2 The outermost shell structure of the electrons in orbitals around a nucleus (2,8,8... etc

